Locking-free adaptive discontinuous Galerkin FEM for linear elasticity problems
نویسندگان
چکیده
منابع مشابه
Locking-free adaptive discontinuous Galerkin FEM for linear elasticity problems
An adaptive discontinuous Galerkin finite element method for linear elasticity problems is presented. We develop an a posteriori error estimate and prove its robustness with respect to nearly incompressible materials (absence of volume locking). Furthermore, we present some numerical experiments which illustrate the performance of the scheme on adaptively refined meshes.
متن کاملA locking-free discontinuous Galerkin method for linear elasticity in locally nearly incompressible heterogeneous media
HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau...
متن کاملDiscontinuous Galerkin FEM for Elliptic Problems in Polygonal Domains (Abstract)
The present work is concerned with the analysis of the Discontinuous Galerkin Finite Element Method (DGFEM) for linear • diffusion problems, • elasticity problems,
متن کاملOn the Local Discontinuous Galerkin Method for Linear Elasticity
Following Castillo et al. 2000 and Cockburn 2003 , a general framework of constructing discontinuous Galerkin DG methods is developed for solving the linear elasticity problem. The numerical traces are determined in view of a discrete stability identity, leading to a class of stable DG methods. A particular method, called the LDG method for linear elasticity, is studied in depth, which can be v...
متن کاملA note on the local discontinuous Galerkin method for linear problems in elasticity
Abstract. In this paper we present a mixed local discontinuous Galerkin formulation for linear elasticity problems in the plane with Dirichlet boundary conditions. The approach follows previous dual-mixed methods and introduces the stress and strain tensors, and the rotation, as auxiliary unknowns. Next, we use suitable lifting operators to eliminate part of the unknowns of the corresponding di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 2006
ISSN: 0025-5718
DOI: 10.1090/s0025-5718-06-01815-1